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The flow fields in two-dimensional, isoenergetic, viscous free mixing with constant 
/3 and with initial velocity profiles deviating slightly from those given by wake- 
like solutions of the Falkner-Skan equation for that are considered. The similar 
solutions of the Falkner-Skan equation are investigated in more detail than in 
the past, e.g. we show that as /3 -+ - 1 the flows approach the pure jet with the 
surrounding fluid at  rest, and that there are new branch solutions for /3 < - 1. 
We have investigated the spatial stability of these flows; it is found that for 
/3 > -0.5 the only spatially stable solutions are the trivial onesf‘(7) = 1, but 
for - 1 < /3 < - 0.5 there are non-trivial, jet-like solutions which are spatially 
stable. As to the new branch solutions for /3 < - 1, all are spatially unstable. 

1. Introduction 
Wake-like solutions of the Falkner-Skan equation f”’ +ff” + /3( 1 -f’2) = 0 

satisfying the boundary conditions f(0) =f”(O) = 0, f’(co) = 1 in the range 
- 0.5 < /3 < 0 were first investigated by Stewartson (1954) in connexion with 
his suggestion that the fluid downstream of a point of separation might be con- 
sidered to be bounded by a free stream. Lees & Reeves (1964) have suggested 
use of this family of solutions to study the base flow of a blunt body at  super- 
sonic speeds by (unhooking ’ the profiles from the Falkner-Skan parameter /3 
and selectingf’(0) = u(0)/ue as an independent parameter. Applying these wake- 
like solutions to study the flow immediately downstream of a flat-based body of 
h i t e  dimension normal to the stream, Kennedy (1964) has shown that the 
solution of this family for /3 + 0 approaches Chapmen’s solution (with a shift 
of origin) for the constant pressure flow past an infinite step. Steiger & Chen 
(1965) have calculated jet-like solutions for the range - 1 < /3 < - 0.5 and some 
wake-like solutions in the range /3 > 1. 

Our purpose here is twofold. First, we provide some additional information 
concerning the similarity solutions. In  particular, we give new solutions for 
/3 < - 1. In  addition, we show that the solution branch investigated by Stewart- 
son approaches asymptotically the case of a (pure’ jet with the surrounding 
fluid at rest as /3 + - l+. 

Our second purpose relates to flows which represent small departures from 
strictly similar flows of the wake and jet type. This follows the work of Libby & 
Fox (1963) and of Chen & Libby (1968), whereinlinearized deviations from similar 
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11-2 



164 K.  K.  Chen 

solutions are shown to lead to interesting and useful results for boundary layers. 
As one application of this extension, we cite the question of the spatial stability 
of these flows. Chen & Libby (1968) have discussed the spatial stability of the 
Falkner-Skan equation subject to the boundary-layer conditionsf(0) = f’(0) = 0 
and f’(m) = 1, and have encountered an eigenvalue problem which leads to 
infinite sets of eigenvalues. Similarly, we consider here an initial value problem, 
i.e. we choose flows which are bounded by a free stream with a constant stream- 
wise pressure gradient parameter p. At some streamwise station an initial velocity 
profile deviating slightly from that given by a similar solution is assumed to be 
specified. We investigate the downstream behaviour of such a wake or jet. If the 
similarity profile for that given p is approached as the streamwise distance from 
the initial station increases indefinitely, we consider the flow to be spatially stable 
and expect that such a flow could be observed in an appropriate experiment. We 
have investigated both the spatial stability of the similar solutions calculated by 
the previous authors and that of the trivial solution, i.e. f’(7) = 1. 

2. Analysis for similar flows 
The two-dimensional isoenergetic, symmetric viscous free mixing with stream- 

wise pressure gradient under conditions of similarity and of certain simplified 
thermodynamic and transport properties (cf. Steiger &, Chen 1965) can be de- 
scribed by 

f”’ +ff” + /3( 1 --f’2) = 0. 

This, subject to the boundary conditions: 

f(0) =f“(O) = 0, f’(m) = 1 exponentially, (2) 

Standard notation is used throughout. 
The numerical solutions of (1) subject to the boundary conditions (2) were 

first investigated by Stewartson (1954), in the range - 0.5 < p 6 0. The solutions 
in the same range were recalculated by Kennedy (1964) in his study of laminar 
flow behind flat-based bodies. Stewartson (1964) suggested an analytic relation 
which involves p andf’(0) in the region p M 0, and which agrees reasonably well 
with the numerical results of Kennedy. Steiger &, Chen (1965) presented the solu- 
tions of the same problem in the range - 1.0 < /3 < - 0-5 and /3 > 1.0. The 
numerical results by previous authors are shown in curves B and C of figure 1 
as f’(0) as a function of /3 and are listed in table 1. 

We now indicate that as p .+ - 1+, f ’(0) -+ 00 and that the limiting flow corre- 
sponding to /3 = - 1, f ’ ( O ) + c c  is the two-dimensional jet in a surrounding fluid 
at  rest. We follow the idea of Steinheuer (1968), who demonstrated that one 
solution branch of the Falkner-Skan equation for boundary layers approaches 
the solution for the wall jet. 
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f 3 )  
co 

100.0 
50.0 
20.0 

15.0 
10.0 
5.0 
2.5 

1.718 
1-1 
1.0 
0.9 

0.5370 
0.3644 
0.2210 
0.1015 

P 
- 1.0 
- 0.9853 
- 0.9712 
- 0.9321 

- 0.9123 
- 0.8760 
- 0.7881 
- 0.6705 

- 0.6 
- 0.5170 
- 0.5 
- 0.4816 

- 0.4 
- 0.35 
- 0.30 
- 0.25 

A, 
0 
0.0097 
0.0188 
0.0431 

0.0569 
0.0702 
0*1110 
0,1333 

0.1135 
0.0308 
0.0 

- 0.0298 

- 0.4078 
- 1.0076 
- 2.7245 
- 11.79 

TABLE 1. The free streamline velocity Bnd the lowest eigenvalues 
with /3 for the usual solution branch, i.e. branch C. 

The demonstration is straightforward. Substitution of the transformations 

P(E) = Af(r),  r = (4) 

(5) into (1) yields P”’ + E%” + P(A4 - F’2) = 0, 

subject to the boundary conditions 

P(0) = p”(0) = 0, p’(.o) = A2, 

where the primes now denote differentiation with respect to 6. 
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The previous functionf(7) and its derivatives are given in terms of the new 
function F(4) as 

With no loss of generality we may let P(0) = 1 and determine numerically the 
relation between A and p from ( 5 ) .  We find numerically that as ,8 + - 1+, A -+ 0. 
If we accept this behaviour as plausible, the limiting case /3 = - 1, f’(0) --f co 
for (1)  is equivalent to that of p = - 1 as A -+ 0 for ( 5 ) ,  which then becomes 
identical to the form for a two-dimensional jet with surrounding fluid at  rest 
(cf. Schlichting 1960, pp. 16P168).  

There are trivial solutions for (1) subject to the boundary condition (2), 
i.e. f ’ = 1 for allp. Such solutions correspond to two contiguous, uniform streams 
subject to a streamwise pressure gradient. We mention them here because we 
use them as basic solutions in the later discussion. 

Along the lines of Libby & Liu (1967), we can find new branch solutions which 
intersect once, or more than once, with the linef’ = 1. The physical significance 
of these new branch solutions depends on a suitable initial profile, i.e. a profile 
with velocity overshoot or undershoot near the outer edge of a boundary layer, 
and a suitable external stream corresponding to a constant value of p. The nu- 
merical analysis used here is essentially the same as that described by Libby & 
Chen (1966), an application to the boundary-layer problem of the quasi-lineariza- 
tion technique of Bellman and Kabala, including treatment of the ‘infinity’ 
condition such that exponential decay is assured. Because of the great sensitivity 
off ’(0) to ~9 for the solution branches for p < - 1, it  has been found more con- 
venient to specify a value for f ’(0) and to consider /3 as a parameter to be deter- 
mined in each iteration cycle of the quasi-linear scheme. When the ratio of the 
difference of two successive values of p to p itself is within a specified tolerance, 
say we consider convergence to have been achieved. We have found the 
new solution branches denoted by B and E in figure 1 and have listed some 
typical prime f’(O),  p in table 2. 

Before discussing the numerical results, we note that the values of ,8, yielding 
f ’ (0 )  = 1 on curves C, D and E,  may be determined analytically as follows. 
Substitution off ’ = 1 +$; with Ij7 < 1 into (1) and proper ordering of the results 
leads to 

fr + 7.f; - 2pf; = 0, (6) 

subject to the boundary conditions 

&(O) = p ; ( O )  = 0, f;(oo) = 0. 

It is advantageous to make the transformation 

H = fi exp (v2/2). 

The new dependent variable is found to satisfy the Hermite equation 

Hff-7H’-(2/3+1)H = 0, (7) 
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subject to the boundary conditions 

H’(0)  = 0, limHexp ( -72/2) = 0. 
7+m 

The eigenvalues, which have been discussed in detail by Pauling & Wilson 

(8) 
(1935, p. 71), are 

= -0.5, - 1.5, -2.5, -3.5, .... 
These values represent the intersection of solution branches with the trivial 
onef’(0) = l.i 

fm 
- 1.0 
- 0.9 
- 0.7 
- 0.5 

0 
0.5 
1.0 
2.0 
2.5 
3-0 
3-5 
4.0 
4.5 
5.0 
6-0 
8.0 

10.0 
12.0 
19.0 

/3 (branch D )  
- 1.0 
- 1.074 
- 1.151 
- 1.217 
- 1.347 
- 1.438 
- 1.5 
- 1.555 
- 

- 1.531 
- 

- 1.454 

- 1-306 
- 1.220 
- 1.171 
- 1.139 
- 1.135 

/l (branch E)  

- 1.75 
- 1.925 
- 2.151 
- 2.264 
- 2.415 
- 2.482 
- 2.500 
- 2.400 
- 2.269 
- 2.083 
- 1.882 
- 1.714 
- 1.589 
- 1.47 

TABLE 2. The free streamline velocity with /3 for the first new solution 
branch, (branch D)  and for the second new solution branch (branch E ) .  

We now return to our numerical results and the new solution branches. First 
we comment on agreement with other results. The values of ,8 yieldingf’(0) = 0 
in figure 1 are identical to those yielding f; = 0 in the analysis of Libby & Liu 
(1967), since they satisfy the same equation and the same boundary conditions in 
this special case. In  addition, the numerical calculations for f’(0) + 1 check the 
analytic prediction of p given by (18). 

The new branches are of limited extent. For example, on branch D as f’(0) 
increases beyondf‘(0) = 3.5, where /? = - 1-49, f’ < 0 as shown in figure 2. The 
extent of the range of 7 for whichf’(7) < 0 increases asf’(0) increases along this 
branchuntilitreaches thepointf’(0) = 19,p = - 1.135, beyond whichf’(7) < - 1 
would occur at  some 7, say q*. But Stewartson (1953) pointed out that it is 
impossible to havef’2(q) > l , j ” (q )  = 0, andf”(7) > 0 for a negative /3, so thatf’ 

t A referee has called our attention to  the fact that if asymmetric flows close to uni- 
formity are admitted, then negative integer values of /3 in the sequence (8) are possible. 
Throughout the present work, only symmetric flows are considered. 
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cannot have a minimum when regarded as a function of 9 in a range yielding 
f‘* > 1. Oncef‘ < - 1 occws at some q, f‘ can never turn back to satisfy the outer 
boundary condition, i.e. f’(co) = 1. Thus, we suppose that there exists no solu- 
tion on this branch for f’(0) 2 19. 

FIGURE 2. Typical velocity profiles for the first new solution branch, i.e. branch D. 

The same argument applies to the other end of this branch, i.e. below 
f’(0) = - 1. Numerical calculation does not permit the exact value of p ,  corre- 
sponding to f ’ (0 )  = - 1, but extrapolation indicates that the terminal point is 
probably p = - 1. 

The second new solution branch, i.e. of curve E ,  appears to be similar to the 
first one, i.e. f‘ < 0 occurs at some 71 as f’(0) increases beyond the point 
(f’(0) = 2.4, /3 = - 2*30), while the branch will terminate at the points (f‘(0) = 5.0, 
,8 = - 1.47) and (f’(0) = - 1, p = - 1.75). 

Before leaving these similarity solutions, we remark on the solutions for 
0 < p < 1. It is interesting that, in this range, only the casef’(7) = 1 appears to 
exist. There seems to be no theoretical reason why this is so for general /3. How- 
ever, for the special case of p = &, we can prove that for f‘(0) 3 - l no solution 
can exist. Moreover, although we have tried by various techniques, we have been 
unable to find numerically any solutions in this range of p .  

Presumably, there are further new solution branches to the left of curve E ,  
but we do not investigate them here. One of the questions relevant to new solution 
branches such as those found here concerns their physical signScance. In  study- 
ing this question, we may follow the spatial stability argument of Chen & Libby 
(1968). Accordingly, consider a particular similar flow for /3 < 0. Since from (3) 
we know that strict similarity cannot apply for all s if /3 < 0, we imagine that 
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similarity can apply for s > so, i.e. downstream of some initial length in which 
the similarity profile oorresponding to the specified pis established. Now suppose 
there are in this initial profile small departures from strict similarity; the question 
to be answered is whether these deviations grow with increasing s or decay so 
that, as s + co, the similarity solution is achieved. If the former situation prevails, 
the flow is said to be spatially unstable and is considered to be physically un- 
realizable, except possibly as a local state in a completely non-similar flow. On 
the contrary, if the flow is spatially stable we would expect it could be observed 
in a suitable experiment. 

FIGURE 3. Typical velocity profiles for the second new solution branch, i.e. branch E.  

The above considerations are in one sense restricted versions of those made 
for boundary layers with p 2 0 by Serrin (1967), who showed that a boundary 
layer with any arbitrary initial profile approaches the relevant similar flow as 
s -+ 00; in another sense they are more general versions in that any p pertains. 

We now proceed to examine the spatial stability of the previously obtained 
and new solutions to the Falkner-Skan equation for wake-like and jet-like flow. 
We remark that the eigenfunctions and eigenvalues arising in the study of spatial 
stability have applicability to other analysis. 

3. Analysis of nearly similar flows 
If we follow the analysis of Chen & Libby (1968), it is readily found that the 

perturbations about a similar solution f(7) corresponding to a particular j3 may 
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be described by the eigenfunction N,(7) and related eigenvalues A,, defined by 

N: + f N i  + (A, - 2/3)f’NA + (1 - A,)f”N, = 0, (9) 

N,(O) = N i ( 0 )  = 0 and NA(o0) = 0, exponentially. 

Moreover, following their work, we can show that the eigenvalues are real, and 
the eigenfunctions orthogonal in the sense 

/;.~4(exp/:fd7) (Nn/f‘)f (Nrn/f’)‘ d7 = snrncn. (10) 

Finally, we can examine whether the eigenfunctions are positive. Again 
following Chen & Libby (1968), we must examine the cases /3 2 0 and /3 < 0, 
and the cases whereinf’(7) is either positive definitely or negative in some range 
of 7 must be treated separately. For any /3 iff ’(7) is piecewise negative, then 
infinite sequences of positive and negative A’s exist. For /3 > 0, f(7) > 0, the A’s 
are all positive; for /3 < 0, f ( 7 )  > 0, there exists a sequence of increasing A’s, 
but the lowest one need not be positive. 

With these facts established, it is possible to employ numerical analysis to  
determine for a given f(7) and corresponding /3 the eigenfunctions and eigen- 
values. For example, the work of Libby & Chen (1968), which we have applied to 
the present flows, shows how quasi-linearization extended to eigenvalue problems 
may be so used. 

The eigenvalue problem for the special case of the flows f’ = 1 can be studied 
analytically. On physical grounds, this case corresponds to the examination of 
the downstream effect of a small, symmetric departure from a uniform stream 
subject to a streamwise pressure gradient corresponding to similarity. Substitu- 
tion off = 7, f ’  = 1 and f ”  = 0 into (9) yields 

N”’+yN”+(h-2/3)N’ = 0, (11) 

subject to the boundary conditions (9). Equation ( 1 1 )  is of the same form as 
(7) and yields the eigenvalues 

h n = 2/3+1, 2/3+3, 2/3+5, ..., 2/3+2n- l ,  .... (12) 

Pauling & Wilson (1935) list the corresponding eigenfunctions, which are ortho- 
gonal in a sense consistent with (lo), providedf’ = 1 and f = 7. 

The lowest eigenvalues, A, = 2,4+ 1 ,  which we show in figure 4, are positive 
for /3 > -0.5. This result implies within this linear theory that a boundary 
layer with an initial profile close to the trivial solution, f‘ 3 1, for the pressure 
gradient parameter /3 greater than 0.5 will approach uniformity with increasing 
downstream distance. For the range /3 < - 0.5 the trivial solutions of (1) are 
unstable to arbitrary perturbations in initial data. 

However, it is clear from the sequence in (12) that, for - 1.5 < ,4 < -0.5, the 
uniform flow is stable to all perturbations except those related to the first eigen- 
function, Nl(7), and that similar considerations apply to successive ranges of p. 

We now discuss the eigenvalues for the non-uniform flows. In the range 
- 1 < /3 < Po = - 0.1988, i.e. on branch C, we use numerical methods to establish 
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the sign of the lowest eigenvalue. The results are shown in figure 4 and in table 1 
and are that only for - 1 < /3 < - 0.5 is A, > 0. For Po < p < 0 and for branch B 
we know from our general considerations for f(7) < 0 in some range of r] that 
sequences of negative eigenvalues exist. 

i -0.1988 
I 
I 
I 
I 
I 
I 
I - 1  
1 
I 
I 
I 
I 
I 
I 2 
I 

I 
I 

i I 
I 

FIGURE 4. The lowest eigenvalues for the trivial and non-trivial solution branch 
for - 1 < p < Po. I, A, for the trivial solution; 11, A, for the non-trivial solution. 

As to the first new solution branch going through the point f’(0) = 0 for 
p = - 1.347, we know that the solutions forf’(0) < 0 andf’(0) > 3.5 are spatially 
unstable because of the negative f’  in some regions T,I > 0. In  the range 
0 < f’(0) < 3.5 it is found that there exist one or more negative eigenvalues 
preceded by an infinite sequence of positive An’s. Therefore, the entire branch 
is unstable. 

However, the second lowest eigenvalue of this branch would behave almost 
like the lowest one of the conventional branch, i.e. A, 2 0 between the points 
(p = - 1*5,f’(0) = 1) and (p = - 1*556,f’(O) = 2.21), while A, < 0 over the other 
regions. Physically, we may argue that if we can suppress the lowest mode 
from the initial profile the solutions of this branch with A, > 0 can be considered 
to be spatially stable. 
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The same phenomena occur on the second new branch, i.e. on branch E ,  
A,, A, < 0 over all regions and A, 2 0 only between the points 

(p  = -2*5,f’(O) = 1) and (p = -2*5002, f ’ (O)  = 0.94). 

Thus, we have examined the linearized spatial stability of all the presently 
available wake-like and jet-like solutions of the Falkner-Skan equation and find 
that the uniform flowf’(7) = 1 is stable for p > - 0.5, and that the non-uniform 
flow for - 1 < p < - 0.5 is stable; all other flows are spatially unstable. 

This work is based on part of the author’s (1968) Ph.D. thesis, at  the University 
of California, San Diego. The author gratefully acknowledges the continuous 
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for f’(0) @ 1. The research was supported by the Institute for Pure and 
Applied Physical Sciences, the Advanced Research Projects Agency (Project 
DEFENDER), contract no. DA-31-124-ARO-D 1257, monitored by the U.S. 
Army Research Office, Durham. 
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